Comparison of two Synaptophysin Immunohistochemistry Antibodies using Tissue Microarray and Image Analysis: The Basis for Objective Antibody Validation

Aysen Yuksel (1), Anthony Henwood (2), Nicole Mackie (2), Daniel Catchpoole (1).

2. Histopathology Department, The Children’s Hospital at Westmead, NSW, Australia.
Background

• Biobanking is about the rational and systematic use of human tissue for scientific investigation.
• Tissue science requires uniform tissue handling to allow comparative analyses.
• Immunohistochemistry allows the presence, location and amount of specific proteins to be identified\textit{ in situ} within tissue.
• Digital pathology creates machine readable data for pathologists.
• Computers the new microscopes!!
Questions

• Human Eye vs Computer?
• How does small changes in digital signal ... (i) translate into observable visual signal? (ii) represent biological change?
• Accurate assessment of IHC signal: will subjective visual assessment do?
• Comparative staining – dealing staining variation?
• Will Pathology be affected by ’big data’??
Study Design
Comparative Tissue Analysis

- How to study many samples under same conditions: design and build a tissue microarray.
- 50 childhood neuroblastoma tumours collected over 60 years
- Pathologist review to current standards
- 10 Tumours/ decade (50’s, 60’s, 70’s, 80’s, 90’s, 00’s).
- Duplicate cores.
- 40 normal control tissue – normal tissue panel
- Map of the NB TMA layout.
Image Analysis – Pixel Counting

- Create high resolution digital image - Aperio Scanscope (0.2um²)
- The pixel intensity (transmissive light) was measured.
- A high value (> 230) represents no antibody staining. A low value (<30) represents maximal antibody staining.
- Pixel partitioned into 4 grades based on amount of light detected coming through each for a particular colour hue.
- Immunohistochemistry (IHC) Index: Weighted sum of proportions pixel in each staining grade. Range 0.0 to 3.0

\[
\text{IHC Index} = \left[(\% \text{ of } -ve) \times 0 \right] + \left[(\% \text{ of } 1+) \times 1 \right] + \left[(\% \text{ of } 2+) \times 2 \right] + \left[(\% \text{ of } 3+) \times 3 \right]
\]

Chetcuti et al, Microarrays, 3(1), 72-88, 2014
Four algorithms were used to segregate the range into 10 subdivisions.
Regional Signal Distribution

Chetcuti et al, Microarrays, 3(1), 72-88, 2014
Synaptophysin

- Marker of neuroblastoma tumour.

Zymed’s Rabbit anti-Synaptophysin (Z66) vs Bond™ RTU anti-Synaptophysin (27G12)

- Stained adjacent TMA slides with Bond Automatic Immunostainer
- Specific and comparable cellular staining was seen with both antibodies.

IHC Indices

<table>
<thead>
<tr>
<th></th>
<th>0.32</th>
<th>0.32</th>
<th>0.82</th>
<th>1.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z66</td>
<td>0.52</td>
<td>0.46</td>
<td>0.90</td>
<td>1.14</td>
</tr>
<tr>
<td>27G12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Polyclonal having greater signal at lower intensity \Rightarrow non-normal distribution
Signal Differences (=0)

- Identifies those cores that have signal differences worth noting.
- Red and blue boxes indicate 1x standard deviation.
- Spots falling outside central box will best indicate the cores where staining differences between the antibodies is most apparent.

\[y = 0.8685x + 1 \]
\[R^2 = 0.4922 \]
Spot Comparison

- Identification and comparison of individual cores showing subtle but significant differences following digital analysis
- Compare mean IHC Index for each paired spot vs relative ratio of IHC index
- Low IHC Index – low staining or highly specific cellular staining?
Signal Distribution

- Distribution of signal across cores grouped according to decades for each antibody.
- The **monoclonal 27G 12** antibody shows a shift in peak to the right indicating more contrast in the signal over the core. ⇒ 1970’s – acetic acid fixation?
- This suggests an improved specificity (clean signal, less background) in signal from and not sensitivity of signal.
Summary

• Tissue Microarrays allow for comparative assessment of IHC.
• Comparative staining – synaptophysin signal variation shown.
• Computers will be the new microscope.
• Simple maths works – don’t be complicated
• Digital assessment of histopathology images allows quantitative assessment – see new things!
• Will Pathology be affected by ’big data’?? –Yes.
Image Analysis – Deep Learning

Sohelia Gheisari
Amanda Charlton

“Patched Completed Local Binary Pattern is an Effective method for Neuroblastoma Histological Image Classification”
Acknowledgements

Tumour Bank
Albert Chetcuti
Li Zhou
Oksana Markovych
Aedan Roberts
Aysen Yuksal
Natalie Gabrael

Pathology
Susan Arbuckle
Nicole Graf
Tony Henwood
Linda Gomes
Nicole Mackie
Michael Krivanek
“Wait, where's Daniel?”

Any Questions ???